Documento sem título
Quarta, 06 Fevereiro 2019 09:03

A inteligência artificial pode acabar com os engarrafamentos?

Não importa se você está no banco do motorista ou do passageiro. Todos já passamos pela mesma situação. O semáforo que nunca abre. As filas intermináveis de carros que se estendem por quilômetros. As buzinas ensurdecedoras.

Os engarrafamentos são uma praga em nossas vidas. Mas, com tanta tecnologia à nossa disposição, por que continuamos a lidar com eles de forma tão obsoleta?

Embora nossos meios de locomoção tenham evoluído bastante nos últimos anos, nossos sistemas de gerenciamento de tráfego vêm tendo dificuldade para acompanhar o crescimento do número de veículos.

Muitas vezes, medidas de contenção de engarrafamentos não conseguem responder a mudanças repentinas nas condições das vias ou do tempo. Isso sem falar nos inúmeros semáforos que ainda funcionam com temporizadores fora de sincronia, impedindo que o trânsito flua normalmente.

Em 2015, havia cerca de 1,3 bilhão de veículos motorizados em todo o mundo e, com o rápido crescimento das economias emergentes, esse número deve subir para mais de 2 bilhões até 2040 . Mesmo com novas vias, esse volume cada vez maior de tráfego poderia rapidamente exceder a capacidade de nossas redes rodoviárias, especialmente nas cidades.

Mas a combinação das novas tecnologias de comunicação com o poder da inteligência artificial (IA), que permite processar grandes quantidades de dados em tempo real, poderia ser a solução para esse problema?

 

Velocidade média muito baixa

Enquanto muitos veem veículos autônomos como a saída para os engarrafamentos — já que robôs podem ser ensinados não só a dirigir de forma menos imprecisa, mas também a reagir mais rápido que motoristas humanos —, ainda vai demorar pelo menos duas décadas antes que eles comecem a ter um impacto significativo.

Até lá, as agências rodoviárias e os planejadores urbanos terão de lidar com uma mistura cada vez mais complicada de motoristas humanos, semi-autônomos e autônomos. Manter todos eles em movimento exigirá que os sistemas de gerenciamento de tráfego reajam e se adaptem instantaneamente.

Em Bengaluru (novo nome oficial de Bangalore), na Índia, cidade que registra com frequência longos engarrafamentos e onde a velocidade média em algumas vias nas horas de pico é de apenas 4 km/h, a gigante de tecnologia Siemens Mobility criou um protótipo de um sistema de monitoramento que usa IA através de câmeras de segurança espalhadas ao longo das vias.

Câmeras identificam o número de veículos em tempo real e transmitem as informações a um centro de controle, onde algoritmos calculam a densidade do tráfego. A partir desses dados, o sistema altera a cadência dos semáforos.

Mas isso requer dados. Muitos dados. Felizmente, eles são abundantes. Há muitas informações de sistemas de monitoramento de tráfego, infraestrutura rodoviária, carros e motoristas por meio de telefones celulares.

Milhões de câmeras estão espalhadas por nossas estradas enquanto veículos em movimento induzem pequenas correntes elétricas em dispositivos de metal escondidos sob o asfalto, fornecendo mais informações sobre as condições do tráfego. Os motoristas podem enviar atualizações instantâneas sobre atrasos graças ao software de navegação que usam em seus smartphones e em seus carros.

 

Grande volume de dados

Algumas dessas tecnologias de monitoramento — como o laço de indução — existem desde os anos 1960, enquanto outras, como câmeras capazes de rastrear o tráfego e ler placas, são mais recentes. O desafio é otimizar toda essa informação e transformá-la em algo útil.

"Desde Isaac Newton, temos tentado influenciar o mundo por meio da construção de modelos matemáticos", diz Gabor Orosz , professor-associado de engenharia da Universidade de Michigan, nos Estados Unidos. "Se tivermos os dados, podemos chegar a soluções. O mesmo se aplica ao tráfego."

Hoje em dia, há iniciativas em curso para aproveitar a capacidade da IA para entender grandes quantidades de informação e mudar a forma como nos deslocamos pelas nossas cidades.

Recentemente, pesquisadores do Instituto Alan Turing, em Londres, e da Toyota Mobility Foundation, no Japão, lançaram um projeto conjunto que busca aprimorar os sistemas de gerenciamento de tráfego por meio do uso da inteligência artificial.

Os cientistas simulam cenários que se tornam cada vez mais complexos, ajudando os algoritmos a aprender como prever mudanças no tráfego. Embora o sistema ainda esteja em fase de testes, a expectativa é que possa ser usado em breve no mundo real.

"Com o profundo aprendizado de máquinas, podemos melhorar a previsibilidade", diz William Chernicoff, chefe de pesquisa e inovação da Toyota Mobility Foundation. "Os responsáveis pela mobilidade urbana podem, então, tomar decisões mais rápidas e mais eficazes sobre o tempo dos semáforos, rotas sugeridas para os usuários do sistema e a alocação de capacidade."

Em Pittsburgh, nos Estados Unidos, pesquisadores já estão trabalhando com gestores municipais em uma iniciativa semelhante que funciona na cidade desde 2012. Um sistema de controle de tráfego desenvolvido por pesquisadores do Instituto de Robótica da Universidade Carnegie Mellon foi implantado em toda a cidade por uma empresa chamada Rapid Flow Tech.

Sua tecnologia, a Surtrac, está sendo usada em 50 cruzamentos de Pittsburgh e, desde seu lançamento, reduziu o tempo de espera em até 40%, de acordo com a empresa. A companhia também afirma que os tempos de viagem na cidade caíram 25%. Já as emissões de gases poluentes também registraram queda, de até 20%.

O sistema usa câmeras de vídeo para detectar automaticamente o número de usuários da estrada, incluindo pedestres e tipos de veículos que estão em um cruzamento. O software, dotado de IA, processa essas informações, segundo a segundo, para encontrar a melhor maneira para garantir a fluidez do tráfego, resincronizando os semáforos, dependendo do que for ideal para manter o trânsito em movimento. As decisões podem ser feitas de forma autônoma ou compartilhadas com outros cruzamentos para ajudá-los a entender o que está acontecendo.

À medida que os veículos se tornam mais conectados com a ajuda do telefone celular e de outras tecnologias sem fio, também ajudam a alimentar sistemas como esse com mais informações. No futuro, de acordo com Griffin Schultz, CEO da Rapid Flow, os veículos conectados poderão compartilhar informações sobre sua velocidade, comportamento dos motoristas e até possíveis falhas na infraestrutura ao redor.

"No momento, estamos apenas aprendendo, mas isso será muito mais comum no futuro", prevê ele. "Não se trata apenas de carros, mas essa tecnologia vai ajudar todos os tipos de usuários da estrada em uma sociedade de transporte multimodal."

Em outros lugares do mundo, a infraestrutura inteligente vem ajudando as redes de transporte a se tornarem mais conectadas. A Siemens Mobility está operando em cidades e municípios em todo o mundo para identificar padrões de movimento na tentativa de aprimorar a experiência de todos nas ruas.

"Existem projetos reais em todo o mundo e suas aplicações estão em constante expansão", diz Markus Schlitt, diretor de sistemas inteligentes de tráfego da empresa.

"Nas cidades do futuro, o tráfego será tão complexo que, sem a inteligência artificial, viveríamos presos em um engarrafamento", diz Schlitt. "Utilizando os dados, podemos identificar padrões que não seriam vistos sem IA. Por meio dessa aprendizagem contínua, podemos atualizar constantemente os padrões de tráfego e, assim, o fluxo de veículos. Isso resulta em menos tempo de espera e menos emissões".

Fonte: G1

TOPO